Pharmazeutische Zeitung online

Träger für Arzneiformen und künstliche lebende Gewebe

08.11.1999  00:00 Uhr

Adipozyten: Fettzellen
Bulkerosion: Der Polymerabbau findet über den gesamten Querschnitt der Matrix statt.
Differenzierung: Entwicklungsphase bis zur vollständigen Übernahme der Gewebefunktionen
extrazelluläre Matrix (ECM): zellfreie Bestandteile des Gewebes
Fibroblasten: Bindegewebszellen
Oberflächenerosion: Der Polymerabbau beschränkt sich auf die Matrixoberfläche
Osteoblasten: knochenbildende Zellen
PGA: Polyglykolsäure (Polyglykolid), Polymer der Glykolsäure
PLA: Polymilchsäure (Polylaktid), Polymer der Milchsäure
PLGA: Copolymer aus Milch- und Glykolsäure; Poly(lactid-co-glycolid); beide Moleküle sind in zufälliger Reihenfolge miteinander polymerisiert.
Proteoglykane: saure Kohlenhydrate, die an einen Proteinkern gebunden sind

Literatur:

  1. Vert, M., et al., Degradable Polymers and Plastics, Redwood Press Ltd. 1992, S. 73-92.
  2. Ronneberger, B., et al., In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. J. Biomed. Mater. Res. 30 (1996) 31-40.
  3. USP 23, Biological reactivity tests, in vivo. 1699 -1703.
  4. Göpferich, A., Polymer Degradation and Erosion: Mechanisms and Applications. Eur. J. Pharm. Biopharm. 42 (1996) 1-11.
  5. Herrlinger, M., Dissertation, Universität Heidelberg 1992.
  6. Vert, M., Mauduit, J., Li, S., Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15 (1994) 1209-1213.
  7. Göpferich, A., Polymer Bulk Erosion. Macromolecules 30 (1997) 2598-2604.
  8. Ueda, M., Kreuter, J., Optimization of the preparation of loperamide, loaded poly (L, lactide) nanoparticles by high pressure emulsification, solvent evaporation. J. Microencapsul. 14 (1997) 593-605.
  9. Herrmann, J., Bodmeier, R., Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Eur. J. Pharm. Biopharm. 45 (1998) 75-82.
  10. Bodmeier, R., Chen, H. G., Evaluation of biodegradable poly(lactide) pellets prepared by direct compression. J. Pharm. Sci. 78 (1989) 819-822.
  11. Thies, J., Müller, B. W., Size controlled production of biodegradable microparticles with supercritical gases. Eur. J. Pharm. Biopharm. 45 (1998) 67-74.
  12. Lück, M., et al., Plasma protein adsorption on biodegradable microspheres consisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition. J. Controlled Rel. 55 (1998) 107-120.
  13. Göpferich, A., et al., Modulation of marrow stromal cell function using poly(D,L-lactic acid)-block-poly(ethylene glycol) monomethylether surfaces. J. Biomed. Mater. Res. 46 (1999) 390-398.
  14. Esparza, I., Kissel, T., Parameters affecting the immunogenicity of microencapsulated tetanus toxoid. Vaccine 10 (1992) 714-720.
  15. Kreuter, J., et al., Passage of peptides through the blood, brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674 (1995) 171-174.
  16. Luessen, H. L.,et al., Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm. Res. 13 (1996) 1668-1672.
  17. Edwards, D. A., et al., Large porous particles for pulmonary drug delivery. Science 276 (1997) 1868-71.
  18. Brem, H., et al., Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345 (1995) 1008-1012.
  19. Langer, R., Vacanti, J. P., Tissue Engineering. Science 260 (1993) 920-926.
  20. Leclercq, S., el-Blidi, S., Aubriot, J. H., Traitement de la luxation recidivante de prothese totale de hanche par le cotyle de Bousquet. A propos de 13 cas. Rev. Chir. Orthop. Reparatrice Appar. Mot. 81 (1995) 389-394.
  21. Edlich, R. F., et al., Technical factors in wound management. In: Hunt, T. K., Dunphy, J. E. (Hrsg.), Fundamentals on wound management, Appleton-Century-Crofts, New York 1979, S. 416-483.
  22. Aus dem 1996 Annual Report of U.S. Scientific Registry of Transplantation Recipients and the Organ Procurement and Transplantation Network - Transplant Data: 1985-95. UNOS Richmond, V. A., and the Division of Transportation, Bureau of Health Resources Development, Health Resources and Services Administration, U.S: Department of Health and Human Services, Rockville, MD.
  23. Patrick, C. W., Mikos, A. G., McIntire, L. V., Prospectus of Tissue Engineering. In: Patrick, C. W., Mikos, A. G., McIntire, L. V. (Hrsg.), Frontiers in Tissue Engineering. Elsevier Science, New York 1998, S. 3-11.
  24. Skinner, M. D., Schwartz, R. S., Immunosuppressive therapy. 1. N. Engl. J. Med. 287 (1972) 221-227.
  25. Yamada, K. M., Adhesive recognition sequences. J. Biol. Chem. 266 (1991) 12809-12812.
  26. Grinnell, F., Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 53 (1978) 65-129.
  27. Mooney, D., et al., Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell Physiol. 151 (1992) 497-505.
  28. Friess, W., Collagen - biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 45 (1998) 113-136.
  29. Pachence, J. M., Kohn, J., Biodegradable Polymers for Tissue Engineering. In: Lanza, J. P., Langer, R., Chick, W. L (Hrsg.), Prinziples of Tissue Engineering. Academic Press, San Diego 1996, S. 273-293.
  30. DeLustro, F., et al., A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. J. Biomed. Mater. Res. 20 (1986) 109-120.
  31. Göpferich, A., et al., Modulation of marrow stromal cell function using poly(D,L-lactic acid)-block-poly(ethylene glycol)-mono methylether surfaces. J. Biomed. Mater. Res. 46 (1999) 390-398.
  32. Crane, G. M., Ishaug, S. L., Mikos, A. G., Bone Tissue Engineering. Nat. Med. 1 (1995) 1322-1324.
  33. Cima, L. G., et al., Tissue Engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113 (1991) 143-151.
  34. Mikos, A. G., et al., Preparation and characterisation of poly(l-lactic acid) foams. Polymer 35 (1994) 1068-1077.
  35. Shea, L. D., Yue, I. C., Mooney, D. J., Biodegradable polymer matrizes in dental Tissue Engineering. In: Patrick, C. W., Mikos, A. G., McIntire, L. V. (Hrsg.), Frontiers in Tissue Engineering. Pergamon, New York 1998., S. 443-459.
  36. Puleo, D. A., Bizios, R., RGDS tetrapeptide binds to osteoblasts and inhibits fibronectin-mediated adhesion. Bone 12 (1991) 271-276.
  37. Hubbell, J. A., Matrix effects. In: Lanza, J. P., Langer, R., Chick, W. L (Hrsg.), Prinziples of Tissue Engineering. Academic Press, San Diego 1996, S. 247-262.
  38. Lee, S. D., et al., Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17 (1996) 1599-1608.
  39. Barrera, D. A., et al., Synthesis and RGD-peptide modification of a new biodegradable polymer - poly(lactid acid-co-lysine). J. Am. Chem. Soc. 115 (1993) 11010-11011.
  40. Cannizzaro, S. M., et al., A novel biotinylated degradable polymer for cell-interactive applications.Biotechnol. Bioeng. 58 (1998) 529-535.
  41. Saltzman, W. M., Growth factor delivery in Tissue Engineering. MRS Bulletin 21, Nr. 11 (1996) 62-65.
  42. Niklason, L. E., et al., Functional arteries grown in vitro. Science 284 (1999) 489-493.
  43. Oberpfennig, F., et al., De novo reconstitution of a functional mammalian urinary bladder by Tissue Engineering. Nature Biotechnology 17 (1999) 149-155.

Anschrift der Verfasser:
Dr. Michaela Schulz,
Dr. Torsten Blunk,
Professor Dr. Achim Göpferich
Institut für Pharmazie der Universität Regensburg,
93040 Regensburg  Top

© 1999 GOVI-Verlag
E-Mail: redaktion@govi.de

Mehr von Avoxa